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a b s t r a c t

Fluidised bed granulation (FBG) is a particle size enlargement technique which is widely employed in
industry. Modelling of FBG is important in order to understand, control and optimise the process. In
literature, population balance modelling (PBM) which is based on population balance equations (PBEs) is
a common tool to model the processing of these particulate systems. However, the solution of PBEs is not
eywords:
ranulation
opulation balance modelling
arkov chains

ggregation
reakage

straightforward except for relatively simple cases. In this paper, Markov chain simulation is introduced
in order to model and analyse the particle size enlargement process in fluidised bed granulation where
aggregation and breakage occur simultaneously. For the study, the size enlargement process of granules
based on glass beads is examined. 10 g PEG (poly ethylene glycol) with 60% concentration is used as
the binder for a 200 g batch. The results show that Markov chains are an efficient tool to model the
granulation process. Particle size enlargement and the shape of particle size distributions during the

been
granulation process have

. Introduction

Fluidised bed granulation (FBG) is a particle size enlargement
echnique especially prevalent in industries concerned with phar-

aceuticals, detergents, fertilisers, and food. Common reasons for
ranulation are to obtain a narrow band particle size distribution,
o improve flow properties and to avoid cake formation during stor-
ge. In FBG, a liquid binder solution is injected into the bed usually
y a nozzle. There are three different types of FBG according to spray
ethod employed that are top spray, bottom spray and tangential

pray. The purpose of the binder is to produce wet and sticky parti-
le surfaces and hence promote agglomeration when inter-particle
ollisions occur. Whether a collision successfully results in granu-
ation is determined by the granulation mechanism which in turn
epends on particle and bed properties.

Modelling of such processes is required for understanding the
ntire process and for process design and optimisation. Popula-
ion balance modelling (PBM) which is mostly based on the law
f mass conservation is widely used to model such particulate
ystems. A mathematical function of the distribution of a certain

roperty such as mass, diameter, and temperature of the parti-
les is found by using population balance equations (PBEs). PBM
s quite powerful in analyzing the dynamics of the process, how-
ver, the structure of PBEs is complex due to the intrinsic partial
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integro-differential equations and hence analytical solutions may
not be possible except for simple cases. There have been many
research studies dealing with aggregation and breakage processes
using population balance equations [1–8].

Stochastic models which can be based on Markov chain the-
ory is a very valuable tool because of its simplicity and flexibility.
Although, the Markov theory has been used in many fields such
as astronomy, biology, computer science, communications, fore-
cast, game theory and radio engineering after Andrei Andreevich
Markov (1856–1922) released his work [9], it has been used less
than its deserving value in chemical engineering. Even it can be
stated that it is still unknown/unapplied in chemical engineering.
There is only one book which was published in 1998 on application
of Markov chains in chemical engineering [10]. A list of applications
of Markov chains in chemical engineering and powder technology
is as follows: particle flow in fluidised bed [11–13], particle mixing
[14–16], and particle breakage [17–19].

In this paper the Markov chain method is used to model and
analyse particle size enlargement in fluidised bed granulation
where aggregation and breakage occur simultaneously.

2. Theory
2.1. Markov chains

A Markov process is defined by a transition matrix P, a state
vector a(t) and a transition time step �. The transition matrix P has
entries pij which represents transition probabilities from state i to

http://www.sciencedirect.com/science/journal/13858947
http://www.elsevier.com/locate/cej
mailto:muammer.catak@gmail.com
dx.doi.org/10.1016/j.cej.2010.02.022
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tate j at each time step. On this basis, the transition matrix P is
iven by n × n matrix as follows [20]:

=

⎡
⎢⎣

p11 p12 ... p1n

p21 p22 ... p2n

... ... ... ...
pn1 pn2 ... pnn

⎤
⎥⎦

n×n

i(t + 1) =
n∑

j=1

pjiaj(t)

a1(1), a2(1), ..., an(1)] = [a1(0), a2(0), ..., an(0)]

×

⎡
⎢⎣

p11 p12 ... p1n

p21 p22 ... p2n

... ... ... ...
pn1 pn2 ... pnn

⎤
⎥⎦

(t + m) = a(t)Pm

The vector a(t)with components a1(t), a2(t), . . . , an(t) is called
he state probability distribution vector of the system at time t. If the
robability for an entity currently in the state j at time t is denoted
y aj(t) then the state probability distribution of state i for the next
ime step, ai(t + 1)is given by the sum of product of all probabilities.
his is formulated as follows:

i(t + 1) =
n∑

j=1

pjiaj(t) (1)

The general form of Eq. (1) for time-homogeneous and nonho-
ogeneous transition matrices P for different time steps can be

iven by the following equations, respectively;

(t + m) = a(t)Pm (2.a)

(t + 1) = a(t)P(t) (2.b)

The transition matrix P is built up by using the breakage and
ggregation functions which come from population balance mod-
lling terminology. Such Markov chain modelling is based on mass
alance equations as with PBM. From this perspective, it can be
iewed as a possible discrete solution mechanism of PBM. More-
ver, it offers the possibility of replacing PBM in some aspects of
ranulation analysis, since it has equal efficiency but is less time
onsuming.

.2. Population balance modelling

The general continuous form of the population balance equa-
ion for modelling aggregation and breakage processes that occur
imultaneously can be given as follows [21]:

∂V(x, t)
dt

=
∫ ∞

x

q(x, y)b(y)V(y, t)dy − b(x)V(x, t)

+ 1
2

∫ x

0

˛(x − ε, ε)V(x − ε, t)V(ε, t)dε

− V(ε, t)

∫ ∞

0

˛(x, ε)V(ε, t)dε (3)

here x is the particle volume, V(x, t) is the volume fraction density

unction of particles of volume x at time t, q(x, y) is called fragment
article size distribution, and it is the probability distribution of
articles of size x being formed from a break-up process of particles
f diameter y. The area under the curve of q(x, y) must equal 1 due
o the law of mass conservation. b(x) is the breakage frequency.
g Journal 164 (2010) 403–409

The function which is obtained by multiplication of b(x) and q(x,
y) is called the breakage kernel. a(x, ε) is aggregation kernel which
indicates production rate of particle of volume x + ε from particles
of volume of x and volume of ε. It is defined as

˛(x, ε) = ˛0g(x, ε) (4)

a0 is the aggregation frequency which depends on process param-
eters and is mostly constant for a particular process parameters,
g(x, ε) is the aggregation probability distribution. The first line of
Eq. (3) represents the breakage and the second line comprises the
aggregation.

In the literature it is common to assume that the breakage fre-
quency is proportional to volume of the particle as [22]

b(x) = kx (5)

where k is an arbitrary constant and x is particle volume. Accord-
ingly, the discrete breakage frequency can be written as

bi = kxi ≡ kl3i (6)

where xi and li are representative volume size and diameter of
interval i, respectively.

The fragment particle size distribution should be chosen bearing
in mind process parameters. Berthiaux et al. [18] used the following
formulae for particle breakage in which the particle can transit only
into neighbouring intervals as

qjm = xm

xR
j−1 + xR

m

(7)

where 1 < R < 2. If the restriction on only permitting passage to adja-
cent states is removed, then the distribution function in Eq. (7) can
be generalized as

qij =
xR

j

xR
1 + xR

2 + · · · + xR
j

+ · · · + xR
i−1

=
xR

j∑i−1
k=1xR

k

for all i (8)

and Eq. (8) will be subsequently used. Tan et al. [23] described
aggregation kernel in two functions; the product of a size inde-
pendent term ˛0 and a term that is a function of the agglomerating
particle sizes li and lj, respectively.

˛ij = ˛0(li + lj)
2

√
1

l3
i

+ 1

l3
j

(9)

Specifically li and lj are the representative particle diameter in
the size intervals i and j, respectively. A physical interpretation of
Eq. (9) is that the more the two colliding particles differ in size, the
more likely they are to aggregate; conversely equal sized particles
are less likely to agglomerate. A visual implementation of Eq. (9)
can be seen in Fig. 1.

Eq. (9) can be written to obtain a discrete probability distribution
as

˛ij = ˛0

(li + lj)
2
√

(1/l3
i
) + (1/l3

j
)∑n

j=1(li + lj)
2
√

(1/l3
i
) + (1/l3

j
)

(10)

Then, the probability of particles in ith interval may transit to
interval j is written as⎧ √

gij =

⎪⎪⎨
⎪⎪⎩

(li + lj−i)
2 (1/l3

i
) + (1/l3

j−i
)∑2n

j=i+1(li + lj−i)
2
√

(1/l3
i
) + (1/l3

j−i
)

if i ≤ n

0 else

(11)
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• the rig.
• The bed was fluidised for a few minutes at a low air flow rate

(around 0.4 m3/min) until the bed temperature stabilised to the
designated temperature.

Table 1
Specifications of binder solution.

Density at 18 ◦C 1009 kg/m3
Fig. 1. Graphical representation of Eq. (9).

.3. Markov solution

In this section the PBE in Eq. (3) is rewritten to conform with
he Markov algorithm. Assuming the initial size range is divided
nto n state spaces which are enough to represent the process, thus
he discrete size domain is obtained. If the maximum particle size
hich can aggregate in the system is represented by the nth inter-

al, then the number of the intervals will be 2n using a uniform
iscretization procedure. On this basis, breakage and aggregation
unctions must be converted into a discrete form. A particle in any
nterval can go to a higher interval by aggregating, or can go down
o a lower interval as a result of a breakage, or it can stay in the same
nterval after a transition time step. The transition matrix can thus
e divided into three parts as regards the modelling algorithm.

Diagonal entries contain the probability that the particle can stay
in the same interval after a transition time step. If ˛i and bi are
the aggregation and breakage frequencies of the ith interval, then
the probability that the particle stays in the same interval is

pii = (1 − ˛i − bi) (12)

Upper diagonal entries represent the aggregation process. The
probability that the particle will go to size interval j from size
interval i can be written as

pij = ˛igij if j > i (13)

Entries below the diagonal comprise the breakage process. The
probability that the particle goes to interval j from the interval i
due to a breakage can be written as

pij = biqij if j < i (14)

The transition matrix pn×n combines the entries which are
described in Eqs. (12)–(14).
P =
{

pii = (1 − ˛i − bi)
pij = ˛igij if j > i(aggregation)
pij = biqij if j < i(breakage)

(15)
Fig. 2. Initial particle size distribution of glass beads.

3. Materials and methods

3.1. Experiments

For this study, the size enlargement process of glass beads is
examined. These consist of spherical particles whose diameter can
be represented by the normal distribution with mean � = 263 �m
and standard deviation � = 30 �m illustrated in Fig. 2. Average den-
sity of the beads is 2365 kg/m3.

10 g PEG 1500 (poly ethylene glycol) at 60% aqueous concentra-
tion is used as the binder for a 200 g batch of beads. Specifications
of binder are listed in Table 1.

During the experiments the overall air flow rate was
0.65 m3/min. Density of the air is taken to be 1.2 kg/m3 while
dynamic viscosity is 1.85 × 10−5 Pa s.

The experiments reported here were carried out using the Mini-
Airpro fluidised bed granulator (Pro-C-epT Mini-AirPro, Belgium).
A simplified schematic diagram for the experimental setup is given
in Fig. 3. For all experiments, the bottom spray nozzle was located
half way up the Würster column. The upper half of the column is
denoted the spray zone where most particle and binder droplet
interaction occurs.

The experimental conditions that were used are shown in
Table 2.

The granules were produced according to following experimen-
tal procedure:

• The fluidised bed was heated by the air to obtain the designated
bed temperature. This process took 8 min.

• The fluidised air was stopped and 200 g of glass beads placed into
Dynamic viscosity at 18 ◦C 0.215 Pas
Surface tension at 18 ◦C 5.34 × 10−2 N/m
Water diffusion coefficient in air at 35 ◦C 2.6 × 10−5 m2/s
Water specific gas constant 461.889 J/kg K
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Fig. 4. D10, D50, and D90 evolutions of granulation process.
Fig. 3. Fluidised bed granulator, Würster type.

The nozzle was inserted and the air flow rate increased to
designated flow rate of 0.65 m3/min, then the binder injection
commenced.
Every 2.5 min small amount of sample was taken.
After 25 min binder injection was stopped to cease granulation.
Drying of the granules for the final last minute.

During the process about 3 g samples were taken by sample
robe at an interval of 2.5 min. To check the reliability of the sam-
les, the process was stopped at the corresponding time and the
article size of the whole bed measured. It was observed that sam-
les can represent the whole particles with an acceptable error at
ach time. The Camsizer (Retsch Technology, Germany) is based on
igital image processing with a two camera system which is suit-
ble for solids in the range from 30 �m to 30 mm and was used to
easure the particle size distribution.

.2. Model implementation

The Matlab software package is used for the calculations. Gran-
le size can be discretized using a uniform or geometric ratio
cheme; for this paper the geometric method is used. The whole
ize range from 138 �m to 5500 �m was divided into 40 intervals
ith a consecutive diameter ratio of 1.1. Then the representative
ize of each interval is calculated using geometric mean of ends of
he intervals such as

i =
√

didi−1 (16)

able 2
xperimental setup.

Batch size 200 g
Inlet-air pressure 6 bar
Inlet-air flow 0.65 m3/min
Inlet-air temperature 35 ◦C
Outlet-air temperature 31.2 ◦C
Near-product air temperature 31.6 ◦C
Nozzle-air pressure 2.5 bar
Liquid addition rate 0.4 g/min
Total amount of liquid 10 g
Time required to add total amount of liquid 25 min
Extra time to dry product 1 min
Total processing time 34 min Fig. 5. Comparisons of predicted and experimental mean sizes.
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Fig. 6. Particle size distributions obtained fr

here di and di−1 are upper and lower size ends of ith interval.
he magnitudes of the constant aggregation frequency, ˛0, the con-
tant breakage frequency rate, k and the constant in the fragment
article size distribution, R must be chosen from analysis of the
xperimental data. Initially, these parameters were obtained by
inimizing the error between predicted and experimental D10,

50 and D90 of granule size versus time (see Fig. 4). For the vali-
ation of the Markov model, an independent set of experimental
ata obtained by following same experimental procedure was used.
sing the maximum likelihood approach, which aims to achieve the
inimum squared error between the model and the experimental
easurements of the mean size, the optimum ˛0, k and R values
ere obtained as
nd the optimum values of
{

˛0, k, R
}

for min

{
n∑

i=1

(Ei − Mi)
2

}

e model and experiments for various times.

The experimentally measured particle size distribution exhib-
ited a bimodal characteristic. From a statistical analysis of the
results, it was found that particles smaller than 350 �m had an
aggregation frequency that was a third of larger sized particles.
Hence for this data, the constant aggregation frequency is taken
as ˛0 = 6 × 10−3 s−1 for particles those are bigger than 350 �m
and taken as ˛0 = 2 × 10−3 s−1 for particles those are smaller
than 350 �m, the constant breakage frequency rate is taken as
k = 7.96 × 10−12 mm−3 s−1 and the constant R in the fragment par-
ticle size distribution is chosen as 1.05.

The Markov chain method requires an initial state vector a(0), a
transition matrix P40×40 and a transition time step � to be selected.
The initial vector comes from the discretization of the probability

density function for size that is illustrated in Fig. 2. The entries in
the transition matrix are found from the method explained in Sec-
tion 2.2. Determination of the magnitude of the time step, � is more
arbitrary. Since the aggregation frequency ˛0 is constant, then the
model is relatively insensitive to the time step size (once it is suf-
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ciently small). For this work, � is arbitrarily selected as 1 s for the
llustration of the process.

. Results and discussions

Comparisons between the predicted mean sizes and the exper-
mental mean sizes are displayed in Fig. 5. Although, the Markov

odel overestimates the mean size at 17 and 20 min; and under-
stimates at 25 min, the overall agreement is very good in the
rocess.

The particle size distributions obtained from the model and
xperiments for various times are shown in Fig. 6. The par-
icle size has uni-modal distribution at the start (see Fig. 2).
t later stages of the process, the size distribution might be
iewed as having a tri-modal shape with the first peak between
00 �m and 350 �m, the second peak located between 350 �m
nd 600 �m and the third peak beyond 600 �m. These peaks
re more clearly visible especially after 10 min of the process.
n the other hand, the second peak is not very pronounced
nd to avoid an excessively complex model, the actual particle
ize distribution is assumed to be bimodal. The model captures
he bimodal shape of the particle size distribution and matches
he experimental results. Qualitatively it can be noticed that the
greement between the model and the experiment is better for
arge and small particles than intermediate sized particles. The
elected aggregation and breakage functions might cause that slight
isagreement for medium size particles. In addition statistical
nalysis of the results was carried out. According to Kolmogorov-
mirnov test [24], the agreement between the model and the
xperimental results is not less than 90% over the process. If the
ggregation process is significantly dominant over the breakage
rocess, then the whole particle size enlargement process might
e represented just using aggregation functions. However, in this
ystem, breakage also has important role in determining the par-
icle size distribution of the glass beads. Therefore both breakage
nd aggregation functions must be simultaneously used in mod-
lling.

. Conclusions

One dimensional population balance modelling based on size
roperty has been applied to model the particle size enlargement
rocess of glass beads where both aggregation and breakage occur
imultaneously. In addition, the Markov chain method has been
sed to solve the PBM. The results show that the Markov chain
ethod, which is based on population balance concepts, works
ell for the particle size enlargement process of glass beads of

his study. For future work, a better agreement between model
nd experiment might be achieved taking into account the three-
odal shape and increasing the number of the states of the system.
lso different fragment size particle distributions and/or different
ggregation probability functions might be used, and the results
ompared to find the best fitted functions for the bottom spray

ürster type fluidised bed granulation.

omenclature

Markovian transition matrix
(t) state probability vector
tratatensition time step (s)
particle volume (mm3)

(x, t) volume fraction density function of particles of volume x
at time t

(x, y) fragment particle size distribution

[

[

g Journal 164 (2010) 403–409

b(x) breakage frequency (s−1)
a(x, ε) aggregation kernel (s−1)
a0 aggregation frequency (s−1)
g(x, ε) aggregation probability distribution
xi representative volume of interval i (mm3)
li representative diameter of interval i (mm)
t time (s)
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